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Abstract
Big data with its vast volume and complexity is increasingly concerned, developed and used for all professions and trades.  
Remote sensing, as one of the sources for big data, is generating earth-observation data and analysis results daily from the 
platforms of satellites, manned/unmanned aircrafts, and ground-based structures.  Agricultural remote sensing is one of the 
backbone technologies for precision agriculture, which considers within-field variability for site-specific management instead 
of uniform management as in traditional agriculture.  The key of agricultural remote sensing is, with global positioning data 
and geographic information, to produce spatially-varied data for subsequent precision agricultural operations.  Agricultural 
remote sensing data, as general remote sensing data, have all characteristics of big data.  The acquisition, processing, 
storage, analysis and visualization of agricultural remote sensing big data are critical to the success of precision agriculture.  
This paper overviews available remote sensing data resources, recent development of technologies for remote sensing big 
data management, and remote sensing data processing and management for precision agriculture.  A five-layer-fifteen-
level (FLFL) satellite remote sensing data management structure is described and adapted to create a more appropriate 
four-layer-twelve-level (FLTL) remote sensing data management structure for management and applications of agricultural 
remote sensing big data for precision agriculture where the sensors are typically on high-resolution satellites, manned 
aircrafts, unmanned aerial vehicles and ground-based structures.  The FLTL structure is the management and application 
framework of agricultural remote sensing big data for precision agriculture and local farm studies, which outlooks the future 
coordination of remote sensing big data management and applications at local regional and farm scale.
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1. Introduction

The development of earth observation technology, especially 
satellite remote sensing, has made massive remotely-
sensed data available for research and various applications 
(Liu 2015; Chi et al. 2016).  There are more than a thousand 
active satellites orbiting earth nowadays and quite a 
number of the satellites are for remote sensing.  Satellites 
are equipped with one or more sensors or instruments 
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depending on the purpose.  Various sensors are onboard 
to collect various observation data from earth surface, 
including land, water and atmosphere.  These satellites 
with their sensors usually acquire images of earth surface 
unceasingly at different spatial and temporal resolutions.  
In this way, huge volume of remotely sensed images are 
available in many countries and international agencies and 
the volume grows every day, every hour and even every 
second (Rosenqvist et al. 2003; Anonymous 2015).

Precision agriculture has revolutionized agricultural 
operations since the 1980s established on the basis of 
agricultural mechanization through the integration of global 
positioning system (GPS), geographic information system 
(GIS) and remote sensing technologies (Zhang et al. 
2002).  Over the past thirty years, precision agriculture has 
evolved from strategic monitoring using satellite imagery for 
regional decision making to tactical monitoring and control 
prescribed by the information from low-altitude remotely 
sensed data for field-scale site-specific treatment.  Now 
data science and big data technology are gradually merged 
into precision agricultural schemes so that the data can 
be analyzed rapidly in time for decision making (Bendre 
et al. 2015; Wolfert et al. 2017) although research remains 
for how to manipulate big data and convert the big data 
to “small” data for specific issues or fields for accurate 
precision agricultural operation (Sabarina and Priya 2015).  
Agricultural remote sensing is a key technology that, with 
global positioning data, produces spatially-varied data and 
information for agricultural planning and prescription for 
precision agricultural operations with GIS (Yao and Huang 
2013).  Agricultural remote sensing data appear in different 
forms, and are acquired from different sensors and at 
different intervals and scales.  Agricultural remote sensing 
data all have characteristics of big data.  The acquisition, 
processing, storage, analysis and visualization of agricultural 
remote sensing big data are critical to the success of 
precision agriculture.  With the most recent and coming 
advances of information and electronics technologies and 
remote sensing big data support, precision agriculture will 
be developed into smart, intelligent agriculture (Wolfert 
et al. 2017).

The objective of this paper is to overview the theory 
and practice of agricultural remote sensing big data 
management for data processing and applications.  From 
this study, a new scheme for management and applications 
of agricultural remote sensing big data is formulated for 
precision agriculture.

2. Agricultural remote sensing big data

Remote sensing technology has been developed today 
for earth observation from different sensors and platforms.  

Sensors are mainly for imaging and non-imaging broad-band 
multispectral or narrow-band hyperspectral data acquisition.  
Platforms are space-borne for satellite-based sensors, 
airborne for sensors on manned and unmanned airplanes, 
and ground-based for field on-the-go and laboratory sensors.  
Objects on the earth continuously transmit, reflect and 
absorb electromagnetic waves.  In principle, remote sensing 
technology differentiates the objects through determining 
the difference of the transmitted, reflected and absorbed 
electromagnetic waves.  Remote sensing typically works 
on the bands of visible (0.4–0.7 mm), infrared (0.7–15 mm),  
and microwave (0.75–100 cm) in the electromagnetic 
spectrum.  All the factors with geospatial distribution and 
data acquisition frequency result in remote sensing big data 
with huge volume and high complexity.

Remote sensing technology has been developing with 
new, high-performance sensors with higher spatial, spectral 
and temporal resolutions.  Agricultural remote sensing is a 
highly specialized field to generate images and spectral data 
in huge volume and extreme complexity to drive decisions 
for agricultural development.  In the agricultural area, remote 
sensing is conducted for monitoring soil properties and crop 
stress for decision support in fertilization, irrigation and 
pest management for crop production.  Typical agricultural 
remote sensing systems include visible-NIR (near infrared) 
(0.4–1.5 mm) sensors for plant vegetation studies, SWIR 
(short wavelength infrared) (1.5–3 mm) sensors for plant 
moisture studies, TI (thermal infrared) (3–15 mm) sensors 
for crop field surface or crop canopy temperature studies, 
and microwave sensors for soil moisture studies (Moran 
et al. 1997; Bastiaanssen et al. 2000; Pinter et al. 2003; 
Mulla 2013).  LiDAR (Light Detection and Ranging) and 
SAR (Synthetic Aperture Radar) have been enabled to 
measure vegetation structure over agricultural lands (Zhang 
and Kovacs 2012; Mulla 2013).  Remote sensing is the 
cornerstone of modern precision agriculture to realize site-
specific crop field management to account for within-field 
variability of soil, plant stress and effect of treatments.

With the rapid development of remote sensing technology, 
especially the use of new sensors with higher resolutions, 
the volume of remote sensing data will dramatically increase 
with a much higher complexity.  Now, a major concern is 
determining how to effectively extract useful information 
from such big data for users to enhance analysis, answer 
questions, and solve problems.  Remote sensing data are a 
form of big data (Ma et al. 2015).  Storage, rapid processing, 
information extraction, information fusion, and applications 
of massive remote sensing data have become research 
hotspots at present (Rathore et al. 2015; Jagannathan 
2016).  

Agricultural remote sensing big data have the same 
features as all remote sensing big data.  The specialty of 
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agricultural remote sensing is that it not only helps manage 
planning and management of agricultural production 
strategically at regional, national and even global scales, 
but also provides control information tactically for precision 
agricultural operations at the scale of farm fields.  Therefore, 
agricultural remote sensing may produce higher spatial 
and temporal resolution data.  In recent years, unmanned 
aerial vehicle (UAV) has become a unique platform for 
agricultural remote sensing to provide coverage of crop fields 
with multiple images from very low altitude (Huang et al. 
2013b).  The images can, in turn, be converted into not only 
a two dimensional visualization of the field but also a three-
dimensional surface representation of the field (Huang and 
Reddy 2015).  So, UAV-based agricultural remote sensors 
are contributing significantly to agricultural remote sensing 
big data.  UAV-based remote sensing is a special kind of 
airborne remote sensing with possible monitoring of crop 
fields at ultra-low altitude.  How to rapidly and effectively 
process and apply the data acquired from UAV agricultural 
remote sensing platforms is being studied widely at present 
(Huang et al. 2013b; Suomalainen et al. 2014; Candiago 
et al. 2015).    

3. Management of agricultural remote 
sensing big data

3.1. Remote sensing data processing and products

Remote sensing data have to be processed before it 
can be used.  In general, it is not suggested to use raw 
images directly acquired from remote sensors on satellites 
and aircraft because the data have to be corrected due 
to deformations from interactions between sensors, 
atmospheric conditions and terrain profiles.  The corrections 
typically include radiometric and geometric corrections.  A 
complete radiometric correction is related to the sensitivity 
of the remote sensor, topography and sun angle, and 

atmospheric scattering and absorption.  The atmospheric 
correction is difficult for agronomists and agro-technicians, 
in general, because it requires the data and information of 
atmospheric conditions during image acquisition.  However, 
the data and information typically vary with time and location.  
The geometric correction is aimed at correcting squeezing, 
twisting, stretching and shifting of remotely sensed image 
pixels relative to the actual position on the ground, which 
are caused by remote sensing platform’s angle, altitude 
and speed, sensitivity of the remote sensor, and earth 
surface topography and sun angle, atmospheric scattering 
and absorption, and rotation of the earth.  The raw and 
corrected remote sensing images can be summarized into 
data products at different levels as explained in general in 
Table 1 (Di and Kobler 2000; Piwowar 2001).  The programs 
of MODIS (moderate resolution imaging spectroradiometer) 
(National Aeronautics and Space Administration (NASA), 
Washington, D.C.), Landsat (NASA and United States 
Geological Survey (USGS), Reston, VA), European 
satellites such as SPOT (SPOT Image, Toulouse, France), 
and Chinese satellites such as Ziyuan (China Centre for 
Resources Satellite Data and Application, Beijing, China) all 
provide products at different levels more or less depending 
on different applications.  Table 2 shows the remote sensing 
data characteristics of the main medium- and high-resolution 
land satellites of different countries in the world.  Besides 
there are ocean observation satellite, such as OrbView 
of United States, and meteorological satellites, such as 
AVHRR (Advanced Very High Resolution Radiometer), 
NOAA (National Oceanic and Atmospheric Administration, 
Washington, D.C.) of United States and FY-3A/B of China.

Thus, as illustrated, one remote sensing image can 
have many products at different levels and the same image 
product could be resampled up or down scale to meet 
the practical requirements and transformed for different 
applications so that the volume and complexity of remote 
sensing data are rapidly increased as big data.

Table 1  Product levels of satellite remote sensing data

Level Product description
0 Reconstructed, unprocessed instrument and payload data at full resolution, with any and all communication artifacts (e.g., 

synchronization frames, communications headers, duplicate data) removed
1A Reconstructed, unprocessed instrument data at full resolution, time-referenced, and annotated with ancillary information, 

including radiometric and geometric calibration coefficients and georeferencing parameters (e.g., platform ephemeris) 
computed and appended but not applied to the Level 0 data (or if applied, in a manner that Level 0 is fully recoverable 
from Level 1A data)

1B Level 1A data that have been processed to sensor units (e.g., radar backscatter cross section, brightness temperature, 
optical, etc.); not all instruments have Level 1B data; Level 0 data are not recoverable from Level 1B data

2 Derived agro-geophysical variables (e.g., ocean wave height, ice concentration, soil moisture/temperature, canopy 
temperature, etc.) at the same resolution and location as Level 1A source data

3 Variables mapped on uniform spatial grid scales, usually with some completeness and consistency (e.g., missing points 
interpolated, complete regions mosaicked together from multiple orbits, etc.)

4 Model output or results from analyses of lower level data (i.e., variables that were not measured by the instruments but 
instead are derived from these measurements)
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Table 2  Remote sensing data characteristics of main medium- and high-resolution land satellites from different countries of the world

Satellite Payload name Data product Data format Country
EOS-TERRA/
AQUA

MODIS
(250 m, 500 m, 1 km)

Levels 0, 1A, 1B, 2, 3 and 4 HDF-EOS United 
States

Landsat7 Enhanced Thematic Mapper Plus
(ETM+)

Levels 0, 1, 2, 3 and 4 HDF

Landsat8 OLI (15–30 m) L0Rp, L1G, L1Gt and L1T (precisely geometrically 
rectified radiometrically rectified data)

HDF at L0Rp HDF, 
GeoTIFF for othersTIRS (100 m)

Quickbird Panchromatic 0.65 m
Multispectral 2.62 m 

BASIC processing: radiometrically rectified with 
earth projection

GeoProcessing: geometrically rectified
GeoProfessional processing: precisely 

geometrically rectified

GeoTIFF

GeoEye-1 Panchromatic 0.46 m
Multispectral 1.84 m

GeoProcessing, GeoProfessional processing and 
GeoStereo stereo image pair products (1 m)

GeoTIFF

IKONOS Panchromatic 1 m
Multispectral 4 m

Levels 0, 1 and 2 GeoTIFF

WorldView-1 Panchromatic 0.5 m BASIC processing, GeoProcessing, and 
GeoProfessional processing

Stereo products
DEM and DSM products
Smoothed color mosaics

GeoTIFF
WorldView-2 Panchromatic 0.5 m

Multispectral 1.8 m
WorldView-3 Panchromatic 0.31 m

Multispectral 1.24 m
SWIR 3.7 m

WorldView-4 Panchromatic 0.31 m
Multispectral 1.24 m

Pleiades-1/2 Panchromatic 0.5 m
Multispectral 2 m

Original grade products
Ortho grade products

JPEG2000/GeoTIFF France

Spot-5 HRS 2.5–20 m
HRG 10 m
VEG 1 km

Levels 0, 1 and 2 BIL

Spot-6 Panchromatic 1.5 m
Multispectral 6 m

Levels 0, 1 and 2 JPEG 2000 or 
GeoTIFF

RapidEye Multispectral 5 m Levels 1B, 3A and 3B GeoTIFF Germany
CBERS-02B Multispectral 19.5 m Levels 0, 1, 2, 3 and 4 GeoTIFF China

WFI Multispectral 258 m
Panchromatic 2.36 m

ZY-1 02C Panchromatic 5 m
Multispectral 10 m

Levels 0, 1, 2 and 3 GeoTIFF

HR 2.36 m 
ZY-3 Panchromatic 2.1 m

Multispectral 5.8 m 
Levels 0, 1, 2, 3 and 4 GeoTIFF

HJ-1A Multispectral 30 m 
Hyperspectral 100 m 

Levels 0, 1, 2, 3, 4 and 5 (on the basis of Level 4 
product further invert geophysical parameters for 

different applications)

GeoTIFF

HJ-1B Multispectral 30 m Levels 0, 1, 2, 3, 4 and 5 (on the basis of Level 4 
product further invert geophysical parameters for 

different applications)
JL-1 Panchromatic 0.72 m

Multispectral 2.88 m
Levels 0, 1, 2, 3 and 4 GeoTIFF

GF1 Panchromatic 1 m
Multispectral 4 m and 16 m

Levels 0, 1, 2, 3 and 4 GeoTIFF

GF2 Panchromatic 0.8 m
Multispectral 3.2 m

Levels 0, 1, 2, 3 and 4 GeoTIFF

GF3 SAR-C 1-500 m L0-RAW, L1-SLC, L2-GEC and L3-GTC GeoTIFF
Sentinel-1 SAR-C4-80 m L0-RAW, L1-SLC, L1-GRD and L2-OCN GeoTIFF/netCDF European 

Space 
Agency

Sentinel-2 Multispectral 10 m/20 m/60 m Levels 0, 1A, 1B, 1C and 2A JPEG2000
Sentinel-3 OLCI 300 m Levels 1B, 2 land and water netCDF 

SLSTR 500 m/1 km Levels 1B, 2 WCT, WST and LST netCDF
SYN 300 m/1 km Levels 1 and 2 netCDF

SRAL Levels 1, 2 WAT and 2 LAN netCDF
RadarSAT-2 SAR-C 1–100 m SLC, SGF, SGX, SCN, SSG and SPG GeoTIFF Canada
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Remote sensing began through aerial photography in 
nineteenth century.  Satellite remote sensing has been 
developed and dominating since the 1960s.  In the last 
decade, airborne remote sensing, especially UAV-based 
remote sensing, has been significantly developed and 
applied for monitoring natural resources and managing 
agricultural lands.  With such development of remote sensing 
systems and methods, the new remote sensing data product 
system can be formulated in more detail to be referred for 
airborne remote sensing data processing flow.

Image fusion is often needed as well to fuse the images 
in multiple sources, multiple scales and multiple phases but 
in the same coverage to enhance the later image analysis.  
For example, fusion of a high-resolution panchromatic image 
with a low-resolution multispectral image can produce a 
high-resolution multispectral image.  Data fusion is at data 
level, feature level and decision level (Hall and Llinas 2009).  
Remote sensing image data fusion is mostly at pixel level.  
Feature level and decision level fusions can be used in 
image classification and model-based parameter inverse.  In 
addition, image fusion can be used in the process of image 
mosaic to remove exposure difference from image pieces 
and mosaic artifacts.  

UAV remote sensing systems are often operated at very 
low altitude, especially in precision agriculture (Huang et al. 
2013b), for very high-resolution images (1 mm–5 cm/pixel).  
The images from UAV systems, in one hand, could be less 
dependent on weather condition, which could simplify or 
even omit atmospheric correction.  On the other hand, 
each image would cover much less area compared to the 
images from satellites and aircrafts.  To cover a certain 
area, mosaicking of multiple UAV remote sensing images 
is required in the processing of the images.  The coverage 
with multiple images, in turn, provides an opportunity to 
build three dimensional models of the ground surface with 
structure from motion (SfM) point clouds through stereo 
vision (Rosnell and Honkavaara 2012; Turner et al. 2012; 
Mathews and Jensen 2013) for extraction of surface features 
such as plant height and biomass volume (Bendig et al. 
2014; Huang et al. 2017).

3.2. Remote sensing data analysis

Remote sensing data can be analyzed qualitatively and 
quantitatively.  Qualitative remote sensing data analysis 
is classification-based.  Remote sensing classification is 
critical for remote sensing data being converted to useful 
information for practical applications.  Conventional remote 
sensing image classification is based on image pixel 
classification in unsupervised and supervised modes.  The 
commonly used methods includes ISODATA self-organizing, 

maximum likelihood, and machine learning algorithms such 
as artificial neural networks and support vector machine 
(Huang 2009; Huang et al. 2010a).  With the development 
of remote sensing technology for high-resolution data, the 
conventional pixel-based classification methods cannot meet 
practical requirements because the high-resolution images 
with more details may be classified into some unknown 
“blank” spots, which may have negative impact on later 
analysis.  Object-based remote sensing image classification 
(Walter 2004; Blaschke 2010) provides an innovative idea 
to perform image segmentation to merge the neighboring 
pixels with similar spectral signatures into objects as “pixels” 
to classify.  Quantitative remote sensing data analysis 
is model-based.  Features, such as vegetation indices, 
extracted from remote sensing data, have been modeled 
empirically with biophysical and biochemical measurements, 
such as plant height, shoot dry weight and chlorophyll 
content, and with the calibrated models the biophysical and 
biochemical parameters can be predicted for estimation of 
biomass amount and crop yield.  Radiative transfer is the 
fundamental theory for development of remote sensing data 
analysis (Gong 2009).  Corresponding physically-based 
model simulation and parameter inverse have been the 
research focus to understand the mechanism of interaction 
between remote sensing and ground surface features.  In 
the last few decades, the PROSPECT leaf optical properties 
model (Jacquemoud and Baret 1990) and the SAIL canopy 
bidirectional reflectance model (Verhoef 1984) have been 
representative in radiative transfer studies of remote sensing 
plant characterization.  The two models have been evolved, 
expanded and even integrated (Jacquemoud et al. 2006, 
2009) to lay the foundation leading to more advanced studies 
in this aspect (Zhao et al. 2010, 2014).  Furthermore, remote 
sensing data assimilation with process-based models such 
as crop growth models, soil water models, is an emerging 
technology to estimate agricultural parameters which are 
very difficult to inverse only from a model or remote sensing 
data (Huang et al. 2015a, b, c).

Recent years deep learning has been developed from 
machine learning for remote sensing image classification 
(Mohanty et al. 2016; Sladojevic et al. 2016).  It was strongly 
believed that deep learning techniques are crucial and 
important in remote sensing data analysis, particularly for the 
age of remote sensing big data (Zhang et al. 2016).  With the 
low-level spectral and textural features in the bottom level, 
the deep feature representation in the top level of the deep 
artificial neural network can be directly fed into a subsequent 
classifier for pixel-based classification.  This hierarchy 
handles deep feature extraction with remote sensing big 
data, which can be used all parts in remote sensing data 
processing and analysis.
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3.3. Remote sensing data visualization

Visualization of remote sensing data and products are critical 
for users to interpret and analyze.  GIS as a platform of 
remote sensing data visualization has been developing in 
the last decade in four aspects (Song 2008): 

• Modularization
Modular GIS is organized of components with certain 

standards and protocols.
• Web enabling
Web GIS (Fu and Sun 2010) has been developed to 

publish geospatial data for users to view, query and analyze 
through Internet.

• Miniaturization and mobility
Although desktop GIS applications still dominate, mobile 

GIS clients have been adopted with personal digital assistant 
(PDA), tablets and smart phones.  

• Data-based 
GIS spatial data management has been developed from 

flat file management, file/database management, to spatial 
database management.  Spatial data management provides 
the capabilities of massive data management, multi-user 
co-current operation, data visit permission management, 
and co-current visit and systematic applicability of database 
clusters.

The integration of remote sensing data with GIS has 
been developed in the past two decades.  Techniques 
such as machine learning and deep learning offer great 
potential for better extraction of geographical information 
from remote sensing data and images.  However, issues 
remain as data organization, algorithm construction and 
error and uncertainty handling.  With the increased volume 
and complexity of remote sensing data acquired from 
multiple sensors using multispectral and hyperspectral 
devices with multi-angle views with the time, new 
development is needed for visualization tools with spatial, 
spectral and temporal analysis (Wilkinson 1996; Chen 
and Zhang 2014).

3.4. Remote sensing data management

The generalization, standardization and serialization of 
remote sensing data and loads are the inevitable trend in 
future remote sensing technological development.  It is the 
basis for solving the problem of inconsistent remote sensing 
data.  It is also the prerequisite for promoting the application 
of remote sensing big data.  At present, remote sensing 
satellites are developed and operated by independent 
institutions or commercial companies; therefore, basically 
all the satellites have developed their own product system 
standards, but the lack of a set of a unified product standard 
system has resulted in misperception of data and hindered 

development of remote sensing data applications.
The technical committee of Geographic Information/

Geomatics of International Organization for Standardization 
(ISO/TC 211), Defense Geospatial Information Working 
Group (DGIWC), American National Standards Institute 
(ANSI), Federal Geographic Data Committee (FGDC), 
and German Institute for Standardization (DIN) all 
have established and published standards related to 
remote sensing data.  Examples are <<ISO/TS 19101-2 
Geographic information - Reference model - Part 2: 
Imagery>>, <<ISO/TS 19131 Geographic information 
- Data product specifications>>, <<ISO/DIS 19144-1 
Geographic information - Classification systems - Part 
1: Classification system structure>>, <<ISO/ RS 19124 
Geographic information - Imagery and gridded data 
components>> and <<ISO 19115 Geographic information 
- Metadata>>.  However, more standards are needed for 
consistent applications of remote sensing data from multiple 
sources.  

For geometric information retrieval, MODIS creates a 
MOD 03 file of geolocation data to store latitude/longitude 
information corresponding to each pixel in addition to the 
MOD 02 file of calibrated geolocated radiance.  The image 
of each MODIS scene covers fairly large area.  If a specific 
geographic region is the focus, the data of the whole image 
to cover a large more area has to be loaded and mapped 
to the surface of the 3D sphere of the earth.  This leads 
to unnecessary large-volume data handling, difficult data 
visualization at different levels and scales, and ineffective 
data transmission.  Furthermore, mapping of MODIS images 
to the sphere in general only uses image four corners as 
reference points so that mapped images often have relatively 
large geometric deformation.

In order to solve the problem of image mapping on the 
3D sphere, the earth surface can be divided into blocks.  In 
each block the pyramid of images is created and the scene 
can be visualized with image blocks at different resolutions 
with the altitude of viewing point.  Widely used World Wind 
(NASA), GoogleEarth (Google Inc., Mountain View, CA) 
and BingMaps (Microsoft) visualize geospatial data through 
such a method.  For example, World Wind, which is more 
specialized with remote sensing data, expands the 3D 
sphere into a 2D flat map through Plate Carrée projection 
(Snyder 1993).  Then, the flat map is cut into blocks globally.  
Map cutting occurs through the division of the map evenly 
at different levels.  The first level has the cutting interval of 
36°.  The second level has the cutting interval of half of the 
first level, i.e., 18°.  And so on, each follow-up level has the 
interval of half of the previous level.  In this way with the 
global projection of 3D sphere to 2D flat map, the longitude 
is as the horizontal axis with the range of –180° to +180° 
and the latitude is as the vertical axis with the range of 
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–90°(South Pole) to +90° (North Pole).  If the left lower corner 
is used as the origin, the ranges of horizontal and vertical 
axis become [0°, 360°] and [0°, 180°], respectively.  With 
the interval of 36°, the first level can be cut into 10 slices 
horizontally and 5 slices vertically.  Therefore, the global map 
can be divided into 50 blocks at the level.  Similarly, with 
the interval of 18°, the global map can be divided into 200 
blocks with 20 horizontal slices and 10 vertical slices at the 
second level.  And so on, the numbers of blocks in the global 
map at all other follow-up levels can be calculated out.  In 
data storage, regardless of levels, each block corresponds 
a 512×512 image and the block can be recognized with the 
block number on the coordinate system with the latitude 
and longitude.

The method for World Wind to divide the global map at 
different levels is often used to visualize images at different 
resolutions on the 3D sphere.  However, the method with 
such intervals leads to the problem of floating numbers.  
For example, at the eighth level, the size of the block is 
0.28125°×0.28125°.  Manipulation of floating numbers may 
cause problems in computer processing of remote sensing 
data.  It may lose computing precision significantly, and at 
the same time, it may cause inaccurate mapping of sphere 
texture (Clasen and Hege 2006).  In addition World Wind’s 
512×512 image size with different block sizes at different 
resolutions cannot compute with commonly used map scales. 

3.5. Five-layer-fifteen-level remote sensing data 
management

Scientists in the Institute of Remote Sensing and Digital Earth 
(former Institute of Remote Sensing Applications), Chinese 
Academy of Science (CAS) developed an innovative five-
layer-fifteen-level (FLFL) remote sensing data management 
structure (Wang et al. 2012; Yu et al. 2012; Gu et al. 2013).  
The FLFL structure is used to block the sphere surface of the 
earth with each block filled with a 1 000×1 000 image.  Each 
of the five layers has three levels with a size proportion of 
5:2.5:1.  The size difference between layers is 10.  Therefore, 
the sizes of the three blocks in the first layer are 50°×50°, 
25°×25° and 10°×10° in sequence.  The block sizes in the 
second layer are 5°×5°, 2.5°×2.5° and 1°×1°.  And so on for 
the layers of 3, 4 and 5.  This data management structure 
is well fitted for remote sensing data organization with the 
grid of latitude and longitude to match up with the commonly 
used map scales.  Table 3 illustrates the scheme for remote 
sensing data blocking with the FLFL structure.

Fig. 1 shows the image blocks of a MODIS image 
covering the area of longitude in [270°, 320°] and latitude 
in [130°, 160°] with the FLFL scheme (the origins of the 
latitude and longitude were redefined to avoid negative 
values for the blocking algorithm).  With 1 km image 
resolution, the corresponding block size is 10° and the 

Original image

Blocked image

Naming convention:

Where, P, product; M, MODIS; T, Sensor (Terra); 1KM, resolution;
yyyy, year; mm, month; dd, day; level, data level; LAT, latitude; 
LON, longitude.

P()M(T)1KMyyyymmdd_Level_LAT_LON.suffix

160°

150°

140°

130°
270° 280° 290° 300° 310° 320°

Fig. 1  MODIS image FLFL (five-layer-fifteen-level) blocking and naming convention.
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image contains fifteen 10°×10° blocks at the third level of 
the first layer (Table 3).  This figure also shows the naming 
convention of the FLFL scheme.  The standardized image 
naming can help speed up image retrieval.  In general, the 
FLFL structure can be used for different kinds of remote 
sensing images.  The structure has been used for managing 
MODIS, Landsat and Gaofen (China National Space 
Administration) data.  Through FLFL, data management, 
massive remote sensing data are stored in the distributed 
mode.  Moreover, the data path can be directly determined 
through the method of data retrieval through direct access 
to data address.  In this way, any new-generated massive 
remote sensing data can be blocked and sliced into image 
tiles on the surface of the earth sphere and the data of the 
image tiles can be stored and queried quickly.  In such a 
way, the FLFL structure can provide powerful support for 
rapid storage, production, retrieval and services of remote 
sensing big data to the public.  In 2014, a similar blocking/
tile remote sensing data analysis and access structure called 
Australian Geoscience Data Cube has been established 
by Geoscience Australia (GA), CSIRO (Commonwealth 
Scientific and Industrial Research Organization) and the 
NCI (National Computational Infrastructure) to analyze and 
publish Landsat data GA archived covering the Australian 
continent (http://www.datacube.org.au/).  The Data Cube 
has made more than three decades of satellite imagery 
spanning Australia’s total land area at a resolution of 25 
square meters become available, and provides over 240 000  
images showing how Australia’s vegetation, land use, water 
movements and urban expansion have changed over the 
past 30 years (Lewis et al. 2016; Mueller et al. 2016).

Open Geospatial Consortium (OGC) (Wayland, MA, USA) 
defined a Discrete Global Grid Systems (DGGS) as “A form 
of Earth reference that, unlike its established counterpart 
the coordinate reference system that represents the Earth 
as a continual lattice of points, represents the Earth with a 
tessellation of nested cells.”  The DGGS is “A solution can 
only be achieved through the conversion of traditional data 
archives into standardized data architectures that support 
parallel processing in distributed and/or high performance 
computing environments.  A common framework is required 
that will link very large multi-resolution and multi-domain 
datasets together and to enable the next generation of 
analytic processes to be applied.  A solution must be capable 
of handling multiple data streams rather than being explicitly 
linked to a sensor or data type.  Success has been achieved 
using a framework called a discrete global grid system 
(DGGS).” (http://www.opengeospatial.org/projects/groups/
dggsdwg).  Therefore, the GRID Cube based on the FLFL 
scheme agrees with the definition and purpose description of 
the OGC-DGGS.  With the FLFL scheme, a new FLFL GRID 
Cube was created to become a general DGGS Software 

entity with unique interfaces, standardized integration of 
multiple-source, heterogeneous and massive spatial data, 
distributed storage, parallel computing, integrated data 
mining, diverse applications and high-efficiency network 
services while OGC only provides the definition and 
description of  DGGS and OGC-DGGS Core Standard for 
defining the components of DGGS data models, methods 
of frame operation and interface parameters in general.

The uniqueness of the FLFL structure is in that the 
resolution structure of the blocking tiles is 500 m/250 m/100 m 
/50 m/25 m/10 m/5 m/2.5 m/1 m and this structure can be 
expanded up and down indefinitely.  The layer/level are divided 
for one layer with three levels with the ratio of 5:2.5:1 and the 
ratio of layers is 10:1.  This diving ratios can match up commonly 
used map scales like 1:1 000 000, 1:500 000, 1:250 000,  
1:100 000, 1:15 000, 1:25 000, 1:10 000, etc.  Compared to the 
traditional ratio of mn, such as 23/22/21/20,2.53/2.52/2.51/2.50,  
33/32/31/30, 26/34/24/20 and 53/52/51/50, 10/5/2.5/1 of FLFL offers 
the uniformity of layer/level mesh size, better fit to application 
scales and reduced redundancies.  The decimal system is 
the most popular numeric system people use everyday.  The 
ratio of 10 between layers in FLFL is convenient for being 
memorized and conversed.  

3.6. Remote sensing data management for precision 
agriculture

The FLFL remote sensing data management structure has 
been developed for satellite imagery at different resolutions.  
Precision agriculture mostly deals with tactical variable-
rate operations prescribed by the site-specific data and 
information extracted from remote sensing data in the 
scale of farm fields.  In this way, the low-resolution (such as 
MODIS) and medium-resolution (such as Landsat OLI) data 
cannot play a role directly in precision agriculture.  

Agricultural remote sensing is conducted on airplanes 
at different altitudes for different resolutions.  Low altitude 
remote sensing (LARS) is very effective for precision 
agriculture with manned airplanes at 300–1 000 m and 
UAVs at 10–300 m.  Another platform of agricultural remote 
sensing is ground on-the-go with sensors mounted on 
tractors or other movable structures for proximal sensing 
over crop fields.  Therefore, high-resolution satellite remote 
sensing (such as Worldview and Quickbird), airborne remote 
sensing and ground-based remote sensing are integral to 
agricultural remote sensing.  Specific to precision agriculture 
LARS and ground on-the-go remote sensing are major 
data sources for prescription of variable-rate applications 
of seeds, fertilizers, pesticides and water.

Based on the characteristics of remote sensing data 
for precision agriculture, a four-layer-twelve-level (FLTL) 
remote sensing data management structure can be built by 
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expanding down the FLFL remote sensing data management 
structure.  The FLTL structure is used to block the images 
on the sphere surface of the earth and the images are from 
high-resolution satellite sensors, high-resolution airborne 
sensors and ultra-high-resolution UAV-based sensors with 
the pixel resolution from 5.57 m to 1 mm.  Any images in 
coarser or finer resolutions can be further handled with 
expansion of the high-resolution and low-resolution ends of 
the FLTL structure.  Table 4 illustrates the scheme for remote 
sensing data blocking with the FLTL structure.  From the 
table, it can be seen that at the end of the highest resolution 
the pixel resolution is 1 mm, with which a 1:1.5 image map 

can be made.  Now this can be created with a small UAV 
flying super low at like 1–3 m with a high-resolution portable 
camera such as GoPro Hero4 action camera (GoPro, San 
Mateo, CA, USA).  

Fig. 2 shows the FLTL image blocks of a CIR (Color-
Infrared) mosaic image of a number of images taken by a 
MS 4100 3-CCD (Charge-Coupled Device) multispectral 
camera (Optech, Inc., West Henrietta, NY, USA).  The 
images were taken at an altitude over about 300 m to 
cover part of the mechanization research farm of USDA 
Agricultural Research Service (ARS), Crop Production 
Systems Research Unit in Stoneville, Mississippi.  The area 

Table 3  FLFL (five-layer-fifteen-level) remote sensing data blocking

Layer Level Block size (°) Sphere dimension (km) Pixel size (m) Scale
1 1 50 5 566.00 5 566.00 1:50 000 000

2 25 2 783.00 2 783.00 1:25 000 000
3 10 1 113.20 1 113.20 1:10 000 000

2 4 5 556.60 556.60 1:5 000 000
5 2.5 278.30 278.30 1:2 500 000
6 1 111.32 111.32 1:1 000 000

3 7 0.5 55.66 55.66 1:500 000
8 0.25 27.83 27.83 1:250 000
9 0.1 11.13 11.13 1:100 000

4 10 0.05 5.57 5.57 1:50 000
11 0.025 2.78 2.78 1:25 000
12 0.01 1.11 1.11 1:10 000

5 13 0.005 0.56 0.56 1:5 000
14 0.0025 0.28 0.28 1:2 500
15 0.001 0.11 0.11 1:1 000

Fig. 2  MS 4100 CIR image FLTL (four-layer-twelve-level) blocking.
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ranges at longitude in (–90.872°, –90.867°) and latitude in 
(33.4425°, 33.450°).  With the FLTL scheme, the image is 
divided into six 0.0025°×0.0025° blocks at the fifth level 
in the second layer (Table 4).  After resampling, the entire 
image has a resolution of 0.28 m/pixel.  Such processed and 
organized images can serve for decision support for local 
precision agriculture and at the same time the images can 
be shared and referred in the global perspective.

The complexity and frequency of remote sensing 
monitoring for precision agriculture, especially LARS 
monitoring, have produced massive volume of data to 
process and analyze.  This is the new horizon of big 
data from agricultural remote sensing.  In the past, the 
management of the remote sensing data for precision 
agriculture was organized in file-based systems and 
separated from processing and analysis tools.  With the 
accumulation of the data from all the dimensions in time 
(yearly, quarterly, monthly, daily, hourly and even minutely), 
spatial location and spectral range, the management of the 
remote sensing data for precision agriculture requires that 
the data are organized, processed and analyzed in a unified 
framework so that the stored, processed and analyzed data 
and products can be shared locally, nationally and even 
globally.  To meet the requirements, the data can be fed into 
the FLTL framework and streamlined into the flow of data 
processing, analysis and management as shown in Fig. 3.  
In the flow image coverage clustering is the key for best 
use of the images to reduce redundancy and get rid of the 
coverage of non-agricultural areas.  

4. Applications of agricultural remote 
sensing big data

4.1. China agricultural remote sensing monitoring 
service

China Agriculture Remote Sensing Monitoring System 

(CHARMS) was originally developed by the Remote Sensing 
Application Center in the Ministry of Agriculture (MOA) of 
China (Chen et al. 2011).  The system has been operational 
since 1998.  It monitors crop acreage change, yield, 
production, growth, drought and other agro-information for 7 
major crops (wheat, corn, rice, soybean, cotton, canola and 
sugarcane) in China.  The system provides the monitoring 
information to MOA and related agriculture management 
sectors according to MOA’s Agriculture Information 
Dissemination Calendar with more than 100 reports per year.  

The CHARMS system is a comprehensive operational 
crop monitoring system in the Remote Sensing Application 
Center in MOA of China (Fig. 4).  The system consists of a 
database system and six modules for crop acreage change 
monitoring, crop yield estimation, crop growth monitoring, 
soil moisture monitoring, disaster monitoring and information 
service, respectively.  Now, the 7 crops as mentioned above 
are monitored.  More crops are being added into this system 
progressively.  

The monitoring intervals of the system are every 10 days 
for crop growth and soil moisture monitoring, every 30 days 
for crop yield estimation, 20–30 days before harvest for 
sowing area and yield prediction, every 30 days for grass 
growth monitoring, and once a year for aquacultural area 
estimation.

A space and ground integrated network system for 
agricultural data acquisition is operated to coordinate 
multiple sources of remotely sensed crop parameters from 
satellites and ground-based systems with WSNs (wireless 
sensor networks).  UAVs have been utilized to capture 
agricultural data in very low altitudes to complement to the 
ground-based systems.

With the use of the CHARMS system, a series of crop 
remote sensing monitoring analysis have been accomplished.  
Remote sensing data analysis was conducted for the survey 
of planting areas of rice, wheat, and corn in China using 
high-resolution satellite imagery such as RapidEye imagery.  

Table 4  FLTL (four-layer-twelve-level) remote sensing data blocking for precision agriculture

Layer Level Block size (°) Sphere dimension (km) Pixel size (m) Scale
1 1 0.05 5.57 5.57 1:50 000

2 0.025 2.78 2.78 1:25 000
3 0.01 1.11 1.11 1:10 000

2 4 0.005 0.56 0.56 1:5 000
5 0.0025 0.28 0.28 1:2 500
6 0.001 0.11 0.11 1:1 000

3 7 0.0005 0.06 0.06 1:500
8 0.00025 0.03 0.03 1:250
9 0.0001 0.01 0.01 1:100

4 10 0.00005 0.006 0.006 1:50
11 0.000025 0.003 0.003 1:25
12 0.00001 0.001 0.001 1:5
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With medium-resolution SPOT image analysis, crop (rice, 
soybean and corn) area change was determined (Chen et al. 
2011).  Wheat, corn, soybean and rice growth dynamics 
were monitored through analysis of high temporal resolution 
data by the integration of ground observation, agronomic 
models and low-resolution MODIS remote sensing imagery.  
Rice growth was monitored through analysis of MODIS 
imagery (Huang et al. 2012).  Soil moisture of farm land in 
China was monitored through analysis of MODIS imagery 

(Chen et al. 2011).  Crop yields were estimated through 
integration of remote sensing analysis with crop growth 
models, agricultural meteorological models and yield trend 
models (Ren et al. 2008, 2011).  Remote sensing data 
analysis of MODIS imagery was conducted for drought, 
flood, snow and wild fire monitoring and loss assessment.  
Remote sensing data analysis was conducted for pest 
management in crop production in farm land of north and 
northeast of China.  Remote sensing-based dynamical 
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Fig. 3  Remote sensing image processing, analysis and management flow for supporting precision agriculture.  RGB, red, green
and blue; CIR, color infrared; VI, vegetation index.
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monitoring of grass growth and productivity was conducted 
in China (Xu et al. 2008, 2013).  Besides, global agricultural 
remote sensing monitoring was conducted through GEO 
(Group on Earth Observations) and APEC (Asia-Pacific 
Economic Cooperation) networks to cover rice, corn and 
wheat in USA, Canada, Australia, Philippine, Thailand, and 
Vietnam (Chen et al. 2011; Ren et al. 2015).

4.2. Agricultural remote sensing systems operated 
for precision agriculture in Mississippi Delta

Global and national agricultural remote sensing monitoring is 
a coordination of satellite remote sensing and ground-based 
remote sensing.  Remote sensing for regional and local farm 
monitoring and control is a coordination of airborne remote 
sensing and ground on-the-go proximal remote sensing.  For 
precision agriculture, LARS plays a critical role in providing 
prescription data for controlling variable-rate operations.  
UAVs provide a unique platform for remote sensing at very 
low altitudes with very high resolution images over crop fields 
to be supplement to airborne remote sensing on manned 
aircraft and ground-based proximal remote sensing.

The Mississippi Delta is the section in the northwest of 
the state of Mississippi in the United States.  The section 
lies between the Mississippi River and the Yazoo River.  
Agriculture is the backbone of the Mississippi Delta’s 
economy.  This area has many advantages for massive 
commercial crop production with plain topography, extensive 
surface and ground water resources and nutrient-rich soils.  
Major crops produced in the Mississippi Delta are cotton, 

soybean, corn and rice.  Major agricultural companies such 
as Monsanto Company (St. Louis, MO, USA), Syngenta 
AG (Basel, Switzerland) and Dow AgroSciences LLC 
(Indianapolis, IN, USA) have local office for research and 
farm consultation or collaborated with local companies 
to farming enhancement for sustainable development of 
agriculture in this area.  In the middle of 1960s, the USDA 
ARS established the Jamie Whitten Delta States Research 
Center at Stoneville, Mississippi.  The center consists 
of seven research units, with scientists conducting basic 
and applied research in the areas of biological control, 
crop entomology, crop genetics, cotton ginning, pest 
biological control, crop genomics and bioinformatics, and 
crop production systems to aim at agricultural problems 
of the Mid South area of the United States centered in the 
Mississippi Delta.  The Mississippi Delta is well-suited for 
mechanized agriculture for large-scale crop production 
in typical of large flood plains with the area ranging from 
nearly flat to undulating, gentle slopes (Snipes et al. 
2005).  As a major research task, scientists in the Crop 
Production Systems Research Unit have been conducting 
research on developing techniques of precision agriculture 
on the basis of mechanized agriculture.  The research 
has focused on two research farms located in the area 
of Stoneville, Mississippi (A: 33.441803°, –90.886169° 
and B: 33.446753°, –90.872211°, respectively) with the 
areas of 65 and 49 ha, respectively (Fig. 5) for engineering 
development and technical evaluation of aerial application 
technology, aerial remote sensing systems building and 
methods development for crop growth monitoring and 
stress detection, and system evaluation for aerial variable-
rate application with prescription from remote sensing 
monitoring.  The valuable results and information from the 
researches in the farms have been extended to support 
Mississippi Delta agricultural development.  Since 2008 
three terabyte data from multispectral, hyperspectral and 
thermal imaging sensors have been accumulated with 
an average increase of 30 gigabytes per year for various 
studies of crop stress from herbicide damage (Huang et al. 
2010b; Huang Y et al. 2015), weed herbicide resistance 
(Reddy et al. 2014), water deficiency (Thomson et al. 2012) 
and nutrient deficiency (Huang et al. 2013a).  In image 
processing and analysis, various methods and algorithms 
have been developed and applied and with the increase 
of the data volume and complexity the challenges at data 
storage, computation and system input and output (I/O) 
in data management and application will become serious 
issues.  The adoption of the FLTL structure for such 
data management would help distributed data storage, 
computational decomposition for parallel processing, and 
relief of limited system I/O capability, which would result in 
effective applications driven by processing and analysis of 

User management and interface

Data processing
(Remote sensing and others)

C
ro

p 
ac

re
ag

e 
m

on
ito

rin
g

Reporting and information
dissemination 

S
oi

l m
oi

st
ur

e 
m

on
ito

rin
g

C
ro

p 
gr

ow
th

 m
on

ito
rin

g

C
ro

p 
yi

el
d 

es
tim

at
io

n

A
gr

o-
di

sa
st

er
 m

on
ito

rin
g

D
at

ab
as

e 
su

b-
sy

st
em

S
ta

nd
ar

ds
 a

nd
 p

ro
to

co
ls

Fig. 4  The structure of the China Agriculture Remote Sensing
Monitoring System (CHARMS).



1927Yanbo Huang et al.  Journal of Integrative Agriculture  2018, 17(9): 1915–1931

the data with such management.  Fig. 6 shows the original 
mosaicked RGB image and blocked and resampled images 
of the two farms of USDA ARS Crop Production Systems 
Research Unit with the FLTL scheme in the blocks of 
0.0005°×0.0005° at the fourth level in the second layer.  
The raw RGB images were acquired using a 10MP GoPro 
HERO3+ camera (GoPro Inc., San Mateo, California).  The 
GoPro camera was used on UAVs for low-altitude small 
field imaging.  In order to cover larger areas at the scale of 
research farms the camera was mounted and operated on 
an Air Tractor 402B airplane (Air Tractor Inc., Olney, TX, 
USA) with a 2.97 mm f/4.0 non-distortion lens at the altitude 
about 900 m for a spatial resolution at about 55 cm/pixel.  
Multiple images were acquired to be mosaicked to cover 
the farm areas and the resulting images were georectified 
and resampled to fit into the FLTL structure.

5. Comments and outlook

Agricultural remote sensing big data will be developed and 
used for the studies at the global, regional and field scales.  
Agricultural studies face the challenge of uncertainties 
from the variations of weather conditions and management 
strategies.  Remote sensing big data are the valuable 
resource for precision agriculture to potentially make robust 
distributions of agricultural variables, such as yield and 
other biotic and abiotic indicators of crops, to tackle the 
uncertainties from experiments and analysis from different 
sites and farms.  The global and regional trends identified 
from the big data are definitely important for the studies of 
global and regional agriculture, but they are definitely not 
capable of addressing the issues of individual farms.  In this 
way, local remote sensing data management is as important 
as large-scale remote sensing data management.  Large-
scale big data could tell the general trends while the local 
data provides specific features of the farm and fields with 

the weather information.  For site-specific recommendations, 
large-scale data and local data have been coupled together 
to balance between big data and local conditions (Rubin 
2016).  The established FLFL structure provides the 
management and application framework for large-scale 
remote sensing big data while the proposed FLTL structure in 
this paper is the management and application framework of 
agricultural remote sensing big data for precision agriculture 
and local farm studies.

Science and technology of remote sensing are advancing 
with the advancement of information and communication 
technology.  Remote sensing data industry has been 
boomed up and the supply chain of remote sensing data 
from raw data to products is going to establish with the 
explosion of data along the chain.  Working with big data for 
extraction of useful information to support decision making is 
one of the competitive advantages for organizations today.  
Enterprises are balancing the analytical power to formulate 
the strategies in every aspects in the operations to reduce 
business risk (Biswas and Sen 2016).  The developing 
market of remote sensing data requires the industry to define 
and establish the supply chain management for remote 
sensing big data.  For this purpose, an agricultural remote 

Fig. 5  Polygons of the two research farms (A and B) of 
the USDA ARS Crop Production Systems Research Unit in 
Stoneville, MS, USA on GoogleEarth.
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sensing big data architecture for remote sensing data supply 
chain management will be built with the state of the art 
technology of data management, analytics and visualization.  
The sharing, security, and privacy requirements of the 
remote sensing big data supply chain system will be defined 
and developed accordingly.  

The temporal dimension of remote sensing big data 
generates two insight information, historical trend and 
current status.  The historical trends can be derived with the 
archived data while the current status has to be determined 
with real-time data acquisition, processing and analysis.  
Remote sensing for earth observation generates massive 
volume of data everyday.  For the information that has a 
potential significance, the data have to be collected and 
aggregated timely and effectively.  Therefore, in today’s era, 
there is a great deal added to real-time remote sensing big 
data than it was before (Rathore et al. 2015).  Rathore et al. 
(2015) proposed a real-time big data analytical architecture 
for remote sensing satellite application.  Accordingly, it would 
be expected that a real-time big data analytical architecture 
for precision agriculture will appear soon.

As evolved from artificial neural networks, deep-learning 
(DL) algorithms have been widely studied and used for 
machine learning in recently.  DL learns and identifies the 
representative features through a hierarchical structure with 
the data.  Now, DL is being used for remote sensing data 
analysis from image preprocessing, classification, target 
recognition, to the advanced semantic feature extraction and 
image scene understanding (Zhang et al. 2016).  Chen el at. 
(2014) conducted DL-based classification of NASA Airborne 
Visible/Infrared Imaging Spectrometer hyperspectral data 
with the hybrid of principle component analysis, DL stacked 
autocoders, and logictic regression.  Basu et al. (2015) 
proposed a classification framework that extracts features 
from input images from the National Agricultural Imagery 
Program dataset in the United States, normalizes the 
extracted features and feeds the normalized features into 
a Deep Belief Network for classification.  Artificial neural 
networks have been developed and applied for processing 
and classification of agricultural remote sensing data (Huang 
2009, 2010a).  With the development of artificial neural 
networks in deep learning, agricultural remote sensing will 
share the results of the studies of deep learning in remote 
sensing data processing and analysis and develop unique 
research and development for precision agriculture.

Overall, agricultural remote sensing has a number 
of requirements from big data technology for further 
development:

• Rapid and reliable remote sensing data and other 
relevant data.

• High-efficient organization and management of 
agricultural remote sensing data.

• Capability of global remote sensing acquisition and 
service.

• Rapid location and retrieve of remote sensing data for 
specific application.

• Data processing capability at the scales of global, 
national, regional and farm.

• Standardized agricultural remote sensing data 
interactive operation and automated retrieve.

• Tools of agricultural remote sensing information 
extraction.

• Visual representation of agricultural remote sensing 
information.

To meet the requirements, the following works have to 
be accomplished in the next few years:

• Standardize agricultural remote sensing data acquisition 
and organizing.

• Agricultural information infrastructure building, 
especially high-speed network environment and high-
performance group computing environment.

• Agricultural information service systems building with 
better data analysis capability with improved, faster and 
complete mining of agricultural remote sensing big data in 
deeper and broader horizons.

• Building of agricultural remote sensing automated 
processing models and agricultural process simulation 
models to improve the quality and efficiency of agricultural 
spatial analysis.

• Building of computationally intensive agricultural data 
platform in highly distributed network environments for 
coordination of agricultural information services to solve 
large-scale technical problems.
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